Параметр модуль Юнга, или модуль продольной упругости, необходим при различных расчетах для получения показателя жесткости материалов при деформациях растяжения-сжатия, а также при изгибе, который довольно часто используется в расчетах на устойчивость.
ПОИСК
Е — приведенный модуль Юнга, принятый равным модулю упругости стали [c.71]
Деформационные свойства. Модуль Р. (Е) при небольшом растяжении на 4—5 десятичных порядков ниже модуля Юнга для стали [соответственно 0,5— [c.158]
МОДУЛЬ ЮНГА УГЛЕРОДИСТОЙ И ЛЕГИРОВАННОЙ СТАЛЕЙ ПРИ РАЗНЫХ ТЕМПЕРАТУРАХ [c.16]
Следует отметить, что высокая эластичность каучука совершенно отлична от упругих деформаций кристаллических веществ или металлов, составляющих всего несколько процентов от исходных размеров, тогда как каучук можно растягивать в 10 раз.
Резко различаются также необходимые для деформации напряжения.
Модуль упругости (или модуль Юнга) Е, характеризующий отношение между приложенным напряжением и относительным удлинением образца, составляет для стали около 20000 кг/мм , для стекла около 6000 кг/мм , а для каучука лишь около [c.228]
При конструировании важно установить распределение деформаций конструкции, возникающих в процессе эксплуатации под влиянием приложенных напряжений. Напряжения могут возникать из-за давления, создаваемого жидкостью или газом, течением жидкости или неоднородным температурным расширением при изменениях температуры. Упругие свойства часто считают не зависящими от структуры, но существуют ситуации, когда такое утверждение становится неверным. Отдельные зерна металлических кристаллов в отношении упругих свойств анизотропны. Таким образом, упругие постоянные зависят от ориентации зерна по отношению к ориентации приложенных напряжений. В процессе производства деталей может возникнуть преимущественная ориентация отдельных зерен, что и создает упругую анизотропию. Весьма вероятно, что различные степени преимущественной ориентации приводят к довольно широкому разбросу данных по упругим свойствам металлов и сплавов. Вследствие того что этот разброс может вызывать появление погрешности, достигающей в некоторых случаях при расчетах деформаций 20 %, эта тема детально рассматривается в настоящем параграфе. Таблица 3, 4.5,8 — лишь пример того типа информации, которая встречается в литературе. Можно полагать, например, что стали с 5—9 %-ным содержанием хрома должны иметь примерно те же значения модуля Юнга, что и стали, содержание хрома в которых близко к указанному. [c.196]
Прочность сталей значительно изменяется при переходе к высоким температурам. Так, предел прочности при растяжении хромоникелевой стали типа 18-8 падает с 7000 до 4000 кгс/см при 700 °С до 2000 кгс/см при 800 °С. Модуль Юнга углеродистой и легированной сталей уменьшается при нагревании от 20 до 500 °С на 30%. [c.19]
Иногда для повышения прочности между двумя пьезоэлементами помещают металлическую пластину [318].
Собственная частота преобразователя может быть повышена расположением двух пассивных (например, стальных) пластин по обе стороны от биморфного преобразователя из двух пьезопластин.
Это объясняется тем, что модуль Юнга стали много больше, чем у пьезокерамики, а изгибная жесткость конструкции определяется в основном ее [c.70]
Твердость вещества можно оценить при помощи модуля Юнга, представляющего собой отношение приложенного напряжения (или силы, отнесенной к единице площади) и соответствующей ему деформации или удлинения.
Типичные значения модуля Юнга для различных материалов представлены на рис. 7.1. На одном конце шкалы расположены неорганические кристаллические материалы, такие, как алмаз, кварц, сталь и т. д., модули которых [c.
131]
Еще большее впечатление производит различие в силе, необходимой для осуществления деформации.
Для удлинения стальной проволоки диаметром 1 мм на 1% требуется нагрузка в 1600 Н (двукратный средний вес человека), а для удлинения каучуковой нити того же диаметра на ту же величину необходима нагрузка меньше Ю Н.
Так называемый модуль Юнга (отношение напряжения к удлинению) для стали в 100 000 раз больше, чем для каучука. [c.45]
Характеристика сталей и сплавов при комнатной температуре и частоте колебаний 20 кгц (р — плотность Е — модуль Юнга Спр — скорость звука рс — волновое сопротивление [c.115]
Следует отметить, что для коммуникаций часто применяют титан неоправданно большой толщины, что не вызывается ни прочностными, ни коррозионными требованиями. Часто на титан как конструкционный материал переносятся представления, сложившиеся в результате многолетней работы со сталью.
Так, при замене коммуникаций из стали на титановые используют титан той же толщины, что и сталь. Большой расход титана именно на коммуникации объясняется в некоторой степени и этой причиной.
Например, коллекторы влажного хлора на заводах делают из листов титана толщиной 3—5 мм (только на двух предприятиях эти коллекторы сделаны из листов толщиной 2 мм, но и это значительная толщина). За рубежом для данных целей используют титан толщиной 0,8—1,0 мм.
В связи с тем, что модуль Юнга у титана незначителен, при расчетах следует обращать внимание на возможный прогиб труб, а при монтаже — на крепление трубопроводов. [c.156]
Любопытные наблюдения публикует Фирс-Виккерс, утверждая, что нержавеющие аустенитовые стали (хромовые и хромоникелевые) дают падение модуля Юнга приблизительно на 1% на каждые 30° повыщения температуры. В случае особенно тяжелых условий работы лучше всего обратиться за информацией к поставщикам стали. [c.670]
Вулканизованный каучук способен испытывать обратимые деформации на сотни процентов при весьма малом значении модуля упругости. (Модуль Юнга для стали 20 000—22 000 кг/см , для каучука [c.10]
Следует отметить, что высокая эластичность каучука совершенно отличается от упругих деформаций кристаллических веществ или металлов, которые составляют всего несколько процентов от исходных размеров, тогда как каучук можно растягивать до десятикратных удлинений.
Резко различаются также необходимые для деформации напряжения.
Модуль упругости (или модуль Юнга) Е, характеризующий отношение между приложенным напряжением и относительным удлинением образца, составляет для стали около 20 ООО кг/мм”, для стекла—около 6000 кг/мм , а для каучука—лишь около 0,1 кг/мм”. Эти различия объясняются тем, что нри упругой деформации кристаллов происходят лишь небольшие изменения средних расстояний между молекулами и валентных расстояний между атомами, связанные со значительными изменениями внутренней энергии напротив, при чистой высоко-эластической деформации большие удлинения происходят без изменения валентных расстояний нри постоянстве внутренней энергии. [c.272]
На практике все большее применение стали получать ОВ с двуслойным покрытием, в которых первый слой выполнен мягким (буферным) с низким (1—2 МПа) модулем Юнга, а второй—с высоким модулем Юнга от 0,1 до 4 ГПа [52] [c.101]
В формуле (П1.2) за начальную деформацию 5 обычно (но не обязательно) принимается величина некоторой условно упругой деформации, которая определяет начало пластического течения материала.
Источник: http://technorama.ru/raboty/koefficient-uprugosti-materialov.html
Основные сведения
Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м2 или в Па.
Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (1012Па)
Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов.
Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение.
График теста на растяжение
E- это частное от деления нормальных напряжений σ на относительное удлинение ε.
E=α/ε
Закон Гука также можно сформулировать и с использованием модуля Юнга.
Источник: http://stankiexpert.ru/spravochnik/materialovedenie/modul-yunga.html
История исследования упругости материалов
Физическая теория упругих тел и их поведения при действии внешних сил была подробно рассмотрена и изучена английским ученым XIX века Томасом Юнгом. Однако сама концепция упругости была развита еще в 1727 году швейцарским математиком, физиком и философом Леонардом Эйлером, а первые эксперименты, связанные с модулем упругости, провел в 1782 году, то есть за 25 лет до работ Томаса Юнга, венецианский математик и философ Якопо Рикатти.
Заслуга Томаса Юнга заключается в том, что он придал теории упругости стройный современный вид, который впоследствии был оформлен в виде простого, а затем и обобщенного закона Гука.
Источник: http://fb.ru/article/387717/modul-uprugosti—chto-eto-takoe-opredelenie-modulya-uprugosti-dlya-materialov
Общее понятие
Модуль упругости (также известный как модуль Юнга) – один из показателей механических свойств материала, который характеризует его сопротивляемость деформации растяжения. Другими словами, его значение показывает пластичность материала. Чем больше модуль упругости, тем менее будет растягиваться какой-либо стержень при прочих равных условиях (величина нагрузки, площадь сечения и прочее).
В теории упругости модуль Юнга обозначается буквой Е. Является составной частью закона Гука (закона о деформации упругих тел). Связывает напряжение, возникающее в материале, и его деформацию.
Согласно международной стандартной системе единиц измеряется в МПа. Но на практике инженеры предпочитают использовать размерность кгс/см2.
Определение модуля упругости осуществляется опытным путем в научных лабораториях. Суть данного способа заключается в разрыве на специальном оборудовании гантелеобразных образцов материала. Узнав напряжение и удлинение, при котором произошло разрушение образца, делят данные переменные друг на друга, тем самым получая модуль Юнга.
Отметим сразу, что таким методом определяются модули упругости пластичных материалов: сталь, медь и прочее. Хрупкие материалы – чугун, бетон – сжимают до появления трещин.
Дополнительные характеристики механических свойств
Модуль упругости дает возможность предугадать поведение материла только при работе на сжатие или растяжение. При наличии таких видов нагрузок как смятие, срез, изгиб и прочее потребуется введение дополнительных параметров:
- Жесткость есть произведение модуля упругости на площадь поперечного сечения профиля. По величине жесткости можно судить о пластичности уже не материала, а узла конструкции в целом. Измеряется в килограммах силы.
- Относительное продольное удлинение показывает отношение абсолютного удлинения образца к общей длине образца. Например, к стержню длиной 100 мм приложили определенную силу. Как результат, он уменьшился в размере на 5 мм. Деля его удлинение (5 мм) на первоначальную длину (100 мм) получаем относительное удлинение 0,05. Переменная является безразмерной величиной. В некоторых случаях для удобства восприятия переводится в проценты.
- Относительное поперечное удлинение рассчитывается аналогично вышепредставленному пункту, но вместо длины здесь рассматривается диаметр стержня. Опыты показывают, что для большинства материалов поперечное удлинение в 3-4 раза меньше, чем продольное.
- Коэффициент Пуансона есть отношение относительной продольной деформации к относительной поперечной деформации. Данный параметр позволяет полностью описать изменение формы под воздействием нагрузки.
- Модуль сдвига характеризует упругие свойства при воздействии на образец касательных напряжений, т. е. в случае, когда вектор силы направлен под 90 градусов к поверхности тела. Примерами таких нагрузок является работа заклепок на срез, гвоздей на смятие и прочее. По большому счету, модуль сдвига связан с таким понятием как вязкость материла.
- Модуль объемной упругости характеризуется изменением объема материала для равномерного разностороннего приложения нагрузки. Является отношением объемного давления к объемной деформации сжатия. Примером такой работы служит опущенный в воду образец, на который по всей его площади воздействует давление жидкости.
Читать также: Усилитель для сабвуфера в машину своими руками
Помимо вышесказанного необходимо упомянуть, что некоторые типы материалов имеют различные механические свойства в зависимости от направления нагрузки. Такие материалы характеризуются как анизотропные. Яркими примерами служит древесина, слоистые пластмассы, некоторые виды камня, ткани и прочее.
У изотропных материалов механические свойства и упругая деформация одинаковы в любом направлении. К ним относят металлы (сталь, чугун, медь, алюминий и прочее), неслоистые пластмассы, естественные камни, бетон, каучук.
Источник: http://technorama.ru/raboty/koefficient-uprugosti-materialov.html
Модуль упругости Юнга и сдвига, коэффициент Пуассона значения (Таблица)
Ниже приводятся справочные таблицы общеупотребительных констант; если известны две их них, то этого вполне достаточно для определения упругих свойств однородного изотропного твердого тела.
Модуль Юнга или модуль продольной упругости в дин/см2.
Модуль сдвига или модуль кручения G в дин/см2.
Модуль всестороннего сжатия или модуль объемной упругости К в дин/см2.
Объем сжимаемости k=1/K/.
Коэффициент Пуассона µ равен отношению поперечного относительного сжатия к продольному относительному растяжению.
Для однородного изотропного твердого материала имеют место следующие соотношения между этими константами:
G = E / 2(1 + μ) – (α)
μ = (E / 2G) – 1 – (b)
K = E / 3(1 – 2μ) – (c)
Коэффициент Пуассона имеет положительный знак, и его значение обычно заключено в пределах от 0,25 до 0,5, но в некоторых случаях он может выходить за указанные пределы. Степень совпадения наблюдаемых значений µ и вычисленных по формуле (b) является показателем изотропности материала.
Таблицы значений Модуля упругости Юнга, Модуля сдвига и коэффициента Пуассона
Курсивом даны значения, вычисленные из соотношений (a), (b), (c).
Материал при 18°С | Модуль Юнга E, 1011 дин/см2. | Модуль сдвига G, 1011 дин/см2. | Коэффициент Пуассона µ | Модуль объемной упругости К, 1011 дин/см2. |
Алюминий | 7,05 | 2,62 | 0,345 | 7,58 |
Висмут | 3,19 | 1,20 | 0,330 | 3,13 |
Железо | 21,2 | 8,2 | 0,29 | 16,9 |
Золото | 7,8 | 2,7 | 0,44 | 21,7 |
Кадмий | 4,99 | 1,92 | 0,300 | 4,16 |
Медь | 12,98 | 4,833 | 0,343 | 13,76 |
Никель | 20,4 | 7,9 | 0,280 | 16,1 |
Платина | 16,8 | 6,1 | 0,377 | 22,8 |
Свинец | 1,62 | 0,562 | 0,441 | 4,6 |
Серебро | 8,27 | 3,03 | 0,367 | 10,4 |
Титан | 11,6 | 4,38 | 0,32 | 10,7 |
Цинк | 9,0 | 3,6 | 0,25 | 6,0 |
Сталь (1% С) 1) | 21,0 | 8,10 | 0,293 | 16,88 |
(мягкая) | 21,0 | 8,12 | 0,291 | 16,78 |
Константан 2) | 16,3 | 6,11 | 0,327 | 15,7 |
Манганин | 12,4 | 4,65 | 0,334 | 12,4 |
1) Для стали, содержащий около 1% С, упругие константы, как известно , меняются при термообработке.2) 60% Cu, 40% Ni. |
Экспериментальные результаты, приводимые ниже, относятся к обычным лабораторным материалам, главным образом проволокам.
Вещество | Модуль Юнга E, 1011 дин/см2. | Модуль сдвига G, 1011 дин/см2. | Коэффициент Пуассона µ | Модуль объемной упругости К, 1011 дин/см2. |
Бронза (66% Cu) | -9,7-10,2 | 3,3-3,7 | 0,34-0,40 | 11,2 |
Медь | 10,5-13,0 | 3,5-4,9 | 0,34 | 13,8 |
Нейзильбер1) | 11,6 | 4,3-4,7 | 0,37 | – |
Стекло | 5,1-7,1 | 3,1 | 0,17-0,32 | 3,75 |
Стекло иенское крон | 6,5-7,8 | 2,6-3,2 | 0,20-0,27 | 4,0-5,9 |
Стекло иенское флинт | 5,0-6,0 | 2,0-2,5 | 0,22-0,26 | 3,6-3,8 |
Железо сварочное | 19-20 | 7,7-8,3 | 0,29 | 16,9 |
Чугун | 10-13 | 3,5-5,3 | 0,23-0,31 | 9,6 |
Магний | 4,25 | 1,63 | 0,30 | – |
Бронза фосфористая2) | 12,0 | 4,36 | 0,38 | – |
Платиноид3) | 13,6 | 3,6 | 0,37 | – |
Кварцевые нити (плав.) | 7,3 | 3,1 | 0,17 | 3,7 |
Резина мягкая вулканизированная | 0,00015-0,0005 | 0,00005-0,00015 | 0,46-0,49 | – |
Сталь | 20-21 | 7,9-8,9 | 0,25-0,33 | 16,8 |
Цинк | 8,7 | 3,8 | 0,21 | – |
1) 60% Cu, 15% Ni, 25% Zn2) 92,5% Cu, 7% Sn, 0,5% P3) Нейзильбер с небольшим количеством вольфрама. |
Вещество | Модуль Юнга E, 1011 дин/см2. | Вещество | Модуль Юнга E, 1011 дин/см2. |
Цинк (чистый) | 9,0 | Дуб | 1,3 |
Иридий | 52,0 | Сосна | 0,9 |
Родий | 29,0 | Красное дерево | 0,88 |
Тантал | 18,6 | Цирконий | 7,4 |
Инвар | 17,6 | Титан | 10,5-11,0 |
Сплав 90% Pt, 10% Ir | 21,0 | Кальций | 2,0-2,5 |
Дюралюминий | 7,1 | Свинец | 0,7-1,6 |
Шелковые нити1 | 0,65 | Тиковое дерево | 1,66 |
Паутина2 | 0,3 | Серебро | 7,1-8,3 |
Кетгут | 0,32 | Пластмассы: | |
Лед (-20С) | 0,28 | Термопластичные | 0,14-0,28 |
Кварц | 7,3 | Термореактивные | 0,35-1,1 |
Мрамор | 3,0-4,0 | Вольфрам | 41,1 |
1) Быстро уменьшается с увеличением нагрузки2) Обнаруживает заметную упругую усталость |
Температурный коэффициент (при 150С)Et=E11 (1-ɑ (t-15)), Gt=G11 (1-ɑ (t-15)) | Сжимаемость k, бар-1(при 7-110С) | |||
ɑ, для Е | ɑ, для G | |||
Алюминий | 4,8*10-4 | 5,2*10-4 | Алюминий | 1,36*10-6 |
Латунь | 3,7*10-4 | 4,6*10-4 | Медь | 0,73*10-6 |
Золото | 4,8*10-4 | 3,3*10-4 | Золото | 0,61*10-6 |
Железо | 2,3*10-4 | 2,8*10-4 | Свинец | 2,1*10-6 |
Сталь | 2,4*10-4 | 2,6*10-4 | Магний | 2,8*10-6 |
Платина | 0,98*10-4 | 1,0*10-4 | Платина | 0,36*10-6 |
Серебро | 7,5*10-4 | 4,5*10-4 | Стекло флинт | 3,0*10-6 |
Олово | – | 5,9*10-4 | Стекло немецкое | 2,57*10-6 |
Медь | 3,0*10-4 | 3,1*10-4 | Сталь | 0,59*10-6 |
Нейзильбер | – | 6,5*10-4 | ||
Фосфористая бронза | – | 3,0*10-4 | ||
Кварцевые нити | -1,5*10-4 | -1,1*10-4 |
Источник: https://infotables.ru/fizika/295-uprugie-svojstva-tel
Источник: http://technorama.ru/raboty/koefficient-uprugosti-materialov.html
Ссылки
- Free database of engineering properties for over 63,000 materials
- Расчет модуля упругости по ПНАЭ Г-7-002-86
- Иомдина Е.Н. Механические свойства тканей глаза человека.
Источник: http://dic.academic.ru/dic.nsf/ruwiki/420069
Виды нагрузок
При использовании металлов прилагаются разные нагрузки статического и динамического воздействия. В теории прочности принято определять нагружения следующих видов.
- Сжатие – действующая сила сдавливает предмет, вызывая уменьшение длины вдоль направления приложения нагрузки. Такую деформацию ощущают станины, опорные поверхности, стойки и ряд других конструкций, выдерживающих определённый вес. Мосты и переправы, рамы автомобилей и тракторов, фундаменты и арматура, – все эти конструктивные элементы находятся при постоянном сжатии.
- Растяжение – нагрузка стремится удлинить тело в определенном направлении. Подъемно-транспортные машины и механизмы испытывают подобные нагружения при подъеме и переноске грузов.
Читать также: Симисторный стабилизатор своими руками
- Сдвиг и срез – такое нагружение наблюдается в случае действия сил, направленных вдоль одной оси навстречу друг другу. Соединительные элементы (болты, винты, заклепки и другие метизы) испытывают нагрузку подобного вида. В конструкции корпусов, металлокаркасов, редукторов и других узлов механизмов и машин обязательно имеются соединительные детали. От их прочности зависит работоспособность устройств.
- Кручение – если на предмет действует пара сил, находящихся на определенном расстоянии друг от друга, то возникает крутящий момент. Эти усилия стремятся произвести скручивающую деформацию. Подобные нагружения наблюдаются в коробках передач, валы испытывают именно такую нагрузку. Она чаще всего непостоянная по значению. В течение времени величина действующих сил меняется.
- Изгиб – нагрузка, которая изменяет кривизну предметов, считается изгибающей. Мосты, перекладины, консоли, подъемно-транспортные механизмы и другие детали испытывают подобное нагружение.
Источник: http://technorama.ru/raboty/koefficient-uprugosti-materialov.html
Литература
- G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4
Источник: http://dic.academic.ru/dic.nsf/ruwiki/420069
Допускаемое механическое напряжение в некоторых материалах при растяжении
Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.
Испытание на растяжение
Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.
Значения σраст в МПа:
Материалы | σраст | |
Бор | 5700 | 0,083 |
Графит | 2390 | 0,023 |
Сапфир | 1495 | 0,030 |
Стальная проволока | 415 | 0,01 |
Стекловолокно | 350 | 0,034 |
Конструкционная сталь | 60 | 0,003 |
Нейлон | 48 | 0,0025 |
Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.
Запасы прочности, закладываемые в ответственные конструкции, также многократны.
Источник: http://stankiexpert.ru/spravochnik/materialovedenie/modul-yunga.html
Предел прочности материала
Это предел возникающего напряжения, после которого образец начинает разрушаться.
Статический предел прочности измеряется при продолжительном приложении деформирующего усилия, динамический — при кратковременном, ударном характере такого усилия. Для большинства веществ динамический предел больше, чем статический.
Инструмент для определения предела прочности
Читать также: Схема подключения однофазного контактора
Кроме того, существуют пределы прочности на сжатие материала и на растяжение. Они определяются на испытательных стенда опытным путем, при растягивании или сжатии образцов мощными гидравлическим машинами, снабженными точными динамометрами и измерителями давления. В случае невозможности достижения требуемого давления гидравлическим способом иногда применяют направленный взрыв в герметичной капсуле.
Источник: http://technorama.ru/raboty/koefficient-uprugosti-materialov.html
Связь с другими модулями упругости
Модуль Юнга связан с модулем сдвига, определяющим способность образца к сопротивлению против деформации сдвига, следующим соотношением:
E связан также и с модулем объёмной упругости, определяющим способность образца к сопротивлению против одновременного сжатия со всех сторон.
Источник: http://stankiexpert.ru/spravochnik/materialovedenie/modul-yunga.html
Модуль деформации стали и её упругости
Основной главной задачей инженерного проектирования служит выбор оптимального сечения профиля и материала конструкции. Нужно найти именно тот размер, который обеспечит сохранение формы системы при минимальной возможной массе под влиянием нагрузки. К примеру, какую именно сталь следует применять в качестве пролётной балки сооружения? Материал может использоваться нерационально, усложнится монтаж и утяжелится конструкция, увеличатся финансовые затраты. На этот вопрос ответит такое понятие как модуль упругости стали. Он же позволит на самой ранней стадии избежать появления этих проблем.
Источник: http://teplobloknn.ru/metally/modul-uprugosti-alyuminiya.html
Температурная зависимость модуля Юнга
Температурная зависимость модуля упругости простых кристаллических материалов объясняется исходя из того, что модуль упругости M ( T ) {displaystyle M(T)} определяется как вторая производная от внутренней энергии W ( T ) {displaystyle W(T)} по соответствующей деформации E ( T ) = d 2 W ( T ) d ε 2 {displaystyle E(T)={d^{2}W(T) over dvarepsilon ^{2}}} . Поэтому при температурах T ≤ Θ D {displaystyle Tleq Theta _{D}} ( Θ D {displaystyle Theta _{D}} — температура Дебая) температурная зависимость модуля упругости определяется простым соотношением
M ( T ) = M 0 − M 1 T − M 2 T 2 {displaystyle M(T)=M_{0}-M_{1}T-M_{2}T^{2}}
где M 0 {displaystyle M_{0}} — адиабатический модуль упругости идеального кристалла при T ⟶ 0 K {displaystyle Tlongrightarrow 0K} ; M 1 T {displaystyle M_{1}T} — дефект модуля, обусловленный тепловыми фононами; M 2 T 2 {displaystyle M_{2}T^{2}} — дефект модуля, обусловленный тепловым движением электронов проводимости[2]
Источник: http://plazmosvarka.ru/izdeliya/fizicheskij-smysl-modulya-yunga.html