Удельная теплоемкость стали: таблицы при различных температурах02Х17Н11М2 20…400…600…800 470…560…610…650 02Х22Н5АМ3 20…100…200…300…400 480…500…530…550…590 03Х24Н6АМ3 (ЗИ130) 20…100…200…300…400 480…500…530…550…570 05ХН46МВБЧ (ДИ65) 100…200…300…400…500…600…700…800 445…465…480…490…500…510…515…520……
Удельная теплоемкость стали распространенных марок
В сводной таблице представлена удельная теплоемкость стали распространенных марок: углеродистых, низко- и высоколегированных сталей, а также чугуна при различной температуре.
Приведены значения средней удельной теплоемкости низколегированных сталей, углеродистых сталей при различных температурах, указана теплоемкость высоколегированных сталей с особыми свойствами в зависимости от температуры.
По данным таблицы видно, что значение удельной теплоемкости стали с ростом температуры увеличивается. Следует отметить, что теплоемкость стали при комнатной температуре находится в диапазоне от 440 до 550 Дж/(кг·град); удельная теплоемкость стали в таблице представлена в интервале температуры от 20 до 1000°С.
Марка стали | Температура, °С | Теплоемкость стали, Дж/(кг·град) |
---|---|---|
02Х17Н11М2 | 20…400…600…800 | 470…560…610…650 |
02Х22Н5АМ3 | 20…100…200…300…400 | 480…500…530…550…590 |
03Х24Н6АМ3 (ЗИ130) | 20…100…200…300…400 | 480…500…530…550…570 |
05ХН46МВБЧ (ДИ65) | 100…200…300…400…500…600…700…800 | 445…465…480…490…500…510…515…520 |
06Х12Н3Д | 100…200…300…400 | 523…544…577…594 |
07Х16Н6 (Х16Н6, ЭП288) | 100…200…300…400…500…600…700 | 440…500…550…590…630…670…710 |
08 | 100…200…400…600 | 465…477…510…565 |
08кп | 100…200…300…400…500…600…700…800…900 | 482…498…514…533…555…584…626…695…695 |
08Х13 (0Х13, ЭИ496) | 20 | 462 |
08Х14МФ | 20…100…200…300…400…500…600 | 460…473…502…540…574…682…754 |
08Х17Т (0Х17Т, ЭИ645) | 20 | 462 |
08Х17Н13М2Т (0Х17Н13М2Т) | 20 | 504 |
08Х18Н10 (0Х18Н10) | 20 | 504 |
08Х18Н10Т (0Х18Н10Т, ЭИ914) | 20…100…200…300…400…500…600…700 | 461…494…515…536…549…561…574…595 |
08ГДНФЛ | 100…200…300…400…500…600…700…800…900 | 483…500…517…529…554…571…613…697…693 |
09Х14Н19В2БР1 (ЭИ726) | 20 | 502 |
015Х18М2Б-ВИ (ЭП882-ВИ) | 100…200…300…400 | 473…519…578…636 |
1Х14Н14В2М (ЭИ257) | 20…100…200…300…400…500…600…700 | 461…486…515…536…544…557…590…624 |
4Х5МФ1С (ЭП572) | 20…100…200…300…400…500…600…700…800 | 431…477…519…565…620…703…888…766…749 |
10 | 100…200…400…600 | 465…477…510…565 |
10кп | 100…200…400…600 | 466…479…512…567 |
10Х12Н3М2ФА(Ш) (10Х12Н3М2ФА-А(Ш)) | 100…200…300…400…500 | 510…538…562…588…627 |
10Х13Н3М1Л | 20 | 495 |
10Х17Н13М2Т (Х17Н13М2Т, ЭИ448) | 20 | 504 |
10Х17Н13М3Т (Х17Н13М3Т, ЭИ432) | 20 | 504 |
10Х18Н9Л | 100 | 504 |
10ГН2МФА, 10ГН2МФА-ВД, 10ГН2МФА-Ш | 100…200…300…400 | 469…553…599…628 |
12МХ | 20…200…300…400…500…600…700 | 498…519…569…595…653…733…888 |
12X1МФ (ЭИ575) | 100…200…300…400…500…600…700…800 | 507…597…607…643…695…783…934…1025 |
12Х13 (1Х13) | 20…100…200…300…400…500…600…700…800 | 473…487…506…527…554…586…636…657…666 |
12Х13Г12АС2Н2 (ДИ50) | 100…200…300…400…500…600…700 | 523…559…602…613…648…668…690 |
12Х18Н9 (Х18Н9) | 20 | 504 |
12Х18Н9Т (Х18Н9Т) | 20…100…200…300…400…500…600…700…800 | 469…486…498…511…519…528…532…544…548 |
12Х18Н12Т (Х18Н12Т) | 20…100…200…300…400…500…600…700 | 461…494…515…540…548…561…574…595 |
14Х17Н2 (1Х17Н2, ЭИ268) | 20 | 462 |
15 | 100…200…400…500 | 469…481…523…569 |
15Г | 100…300…500 | 496…538…592 |
15К | 100…200…400…500 | 469…482…524…570 |
15кп | 100…200…300…400…500…600…700…800 | 465…486…515…532…565…586…620…691 |
15Л | 100…200…400…600 | 469…477…515…570 |
15Х2НМФА-А, 15Х2НМФА-А класс 1 | 100…200…300…400 | 490…515…540…569 |
15Х11МФБЛ (1Х11МФБЛ, Х11ЛА) | 100…200…300…400…500…600 | 494…528…574…641…741…867 |
15Х25Т (Х25Т, ЭИ439) | 20 | 462 |
15ХМ | 100 | 486 |
17Х18Н9 | 20 | 504 |
18Х11МНФБ (2Х11МНФБ, ЭП291) | 100…200…300…400…500…600 | 490…540…590…666…766…900 |
18ХГТ | 100…200…300…400…500…600…700…800 | 495…508…525…537…567…588…626…705 |
20 | 100…200…400…500 | 469…481…536…569 |
20Г | 100…200…400…500 | 469…481…536…569 |
20ГСЛ | 100…200…400…500 | 469…482…536…569 |
20К | 100…200…400…500 | 469…482…524…570 |
20Л | 100…200…400…600 | 469…481…536…570 |
20кп | 100…200…300…400…500…600…700…800…900 | 486…498…514…533…555…584…636…703…695 |
20ХМЛ | 100…200…300…400…500 | 498…572…588…612…660 |
20ХМФЛ | 100…200…300…400…500…600 | 498…574…590…615…666…741 |
20Х3МВФ (ЭИ415, ЭИ579) | 100…200…300…400…500…600 | 502…561…611…657…716…754 |
20Х23Н13 (Х23Н13, ЭИ319) | 20 | 538 |
20Х23Н18 (Х23Н18, ЭИ417) | 20 | 538 |
20ХН3А | 100…200…300…400…500…600…700…800 | 494…507…523…536…565…586…624…703 |
22К | 100…200…400…500 | 469…481…519…569 |
25 | 100…200…400…500 | 469…482…524…570 |
25Л | 100…200…400…600 | 469…481…519…570 |
25Х1МФ | 20 | 461 |
25Х2М1Ф (ЭИ723) | 100…200…300…400…500…600 | 536…574…607…632…674…733 |
25ХГСА | 20…100…200…300…400…500…600…700 | 496…504…512…533…554…584…622…693 |
30 | 100…200…300…400…500 | 469…481…544…523…762 |
30Г | 100…200…300…400…500 | 469…481…544…599…762 |
30Л | 100…200…400…600 | 469…481…523…570 |
30Х13 (3Х13) | 20…100…200…300…400…500…600…700…800 | 473…486…504…525…532…586…641…679…691 |
30ХГТ | 100…200…300…400…500…600…700…800 | 495…508…525…537…567…588…626…705 |
30Х | 20…100…200…300…400…500…600…700…800…900 | 482…496…513…532…555…583…620…703…687…678 |
30ХН2МФА (30ХН2МВА) | 20…100…200…300…400 | 466…508…529…567…588 |
30ХН3А | 100…200…300…400…500…600… 700…800…900…1000 |
494…504…518…536…558…587… 657…703…695…687 |
33ХС | 20…100…200…300…400…500…600…700 | 466…508…529…563…599…622…634…664 |
35 | 100…200…400…500 | 469…482…524…570 |
35Л | 100…200…400…600 | 469…481…523…574 |
35ХГСЛ | 100…200…300…400…500…600…700…800…900 | 496…504…512…533…554…584…622…693…689 |
35ХМЛ | 100…200…300…400…500…600…700…800…900 | 479…500…512…529…550…580…617…689…685 |
36Х18Н25С2 (4Х18Н25С2, ЭЯ3С) | 20 | 515 |
40 | 100…200…300…400…600 | 469…481…519…523…574 |
40Г | 100…200…400…600 | 486…481…490…574 |
40Л | 100…200…400…600 | 469…481…523…574 |
40Х10С2М (4Х10С2М, ЭИ107) | 300…400…500 | 532…561…586 |
40Х13 (4Х13) | 20…100…200…300…400…500…600…700…800 | 452…477…502…528…553…578…620…666…691 |
40ХЛ | 100…200…300…400…500…600…700…800…900 | 491…508…525…538…569…588…626…701…689 |
45 | 100…200…400…500 | 469…482…524…574 |
45Г2 | 100…200 | 444…427 |
45Л | 100…200…400…600 | 469…481…523…569 |
45Х14Н14В2М (ЭИ69) | 300…400…500…600 | 507…511…523…528 |
50 | 300…400…500 | 561…641…787 |
50Г | 20…100…200…300…400…500…600…700 | 487…500…517…533…559…584…609…676 |
50Л | 100…200…400…600 | 478…511…511…569 |
55 | 100…200…400…500 | 477…486…523…569 |
60 | 100…200…400…600 | 481…486…528…565 |
ХН35ВТ (ЭИ612) | 100…200…300…400…500…600 | 511…544…569…590…595…595 |
ХН64ВМКЮТЛ (ЗМИ3) | 20…100…200…300…400…500…600… 700…800…900…1000 |
430…450…470…490…515…540…565… 590…625…650…1008 |
ХН65ВКМБЮТЛ (ЭИ539ЛМУ) | 20…100…200…300…400…500…600… 700…800…900…1000 |
424…436…480…493…505…518…548… 596…650…692…710 |
ХН65ВМТЮЛ (ЭИ893Л) | 20…100…200…300…400…500…600…700…800 | 425…430…440…470…500…510…550…615…650 |
ХН65КМВЮТЛ (ЖС6К) | 20…100…200…300…400…500…600…700…800…900 | 380…400…420…445…470…485…515…560…610…660 |
ХН70БДТ (ЭК59) | 100…200…300…400 | 450…475…500…505 |
ХН70КВМЮТЛ (ЦНК17П) | 20 | 440 |
ХН80ТБЮА (ЭИ607А) | 100…200…300…400…500…600 | 494…547…607…678…749…829 |
Х15Н60-Н | 20 | 460 |
Х20Н80-Н | 20 | 460 |
Х23Ю5Т | 20…800 | 480…750 |
Х27Ю5Т | 20…800 | 500…690 |
А12 | 100…300…400…600 | 469…477…515…569 |
Р6М5 | 100…200…300…400…500…600…700 | 440…470…500…550…580…670…900 |
Р18 | 100…200…300…400…500…600…700 | 420…450…470…510…550…610…690 |
У8, У8А | 20…100…200…300…400…500…600…700…800…900 | 477…511…528…548…565…594…624…724…724…703 |
У12, У12А | 20…100…200…300…400…500…600…700…800…900 | 469…503…519…536…553…720…611…712…703…699 |
Что такое удельная теплоемкость стали и других материалов: терминология + расчётные особенности
Простой эксперимент выше четко дает понять, что у каждого химического элемента имеется собственный физический показатель, именуемый удельной теплоемкостью. В рамках нашего сайта вопрос рассматривается для стали и ее сплавов, ибо в черной/цветной металлургии оговоренный параметр крайне важен. Давайте рассмотрим термин «удельная теплоемкость» и особенность стали поподробнее.
1) Понятие удельной теплоемкости
Термин состоит из 2 слов – удельная и теплоемкость. Для простоты усвоения полного, разберем частное. Теплоемкостью называют количество поглощаемой теплоты при нагревании на температуру в 1 кельвин.
Более точное определение дается в учебнике 8 класса – физическая величина, просчитывающаяся как отношение количества теплоты в бесконечно малой смене температуры, к показателю этого изменения.
Теперь перейдём к удельной теплоемкости. В международной системе единиц величина представляется как заглавная/прописная латинская «С», а единица измерения величины одна из двух – Джоули на килограммы, перемноженные на кельвины (Дж/(кг•К), или калории, деленные на килограммы, умноженные на градусы Цельсия (калория/(кг•°C). Второй вариант относится к одному из многих вариантов внесистемных единиц.
Важно: удельная теплоемкость напрямую зависит от значения температуры, а потому, в науке более точным считается формула со значениями, которые формально бесконечно малы.
В промышленности удельная теплоемкость с предельно минимальными значениями почти не используется поэтому в дальнейшем будет рассмотрена исключительно классическая формулировка формулы расчёта.
Справочные значения веса стального круга
2) Что такое сталь: особенности материала + классификация
Нужно знать, с чем имеем дело, и в отношении стали это особо важно, ведь 95% производства держится именно на данном металлургийном сырье. По сути, сталь – это сплав на основании железа и углерода. Вкрапление углерода меняется в рамках 0.1-3%. В 2020 году при производстве стали, доля легированных добавок может колебаться в рамках 40%, из чего следует, что чистое вхождение железа составляет не более 50% от общего объема.
Преимущества стали | Недостатки материала |
---|---|
Материал с высокими показателями прочности + обилие свойств, что обуславливается различными добавками и способами обработки стали. | Слабая стойкость классической стали к коррозии. Частично решает проблему покрытие нержавейкой/полимером. Нержавеющая сталь в 3-10 раз дороже своего «черного» собрата. |
Хорошая вязкость с упругостью, что позволяет применять материал в местах как с динамическими, так и статическими нагрузками. | Из-за накопления электричества повышается электромеханическая коррозия. |
Низкий показатель износостойкости, что обеспечивает материалу эксплуатационную долговечность. | Конструкции из стали имеют большой вес, что может усложнить монтаж/демонтаж и даже эксплуатацию. |
Экономически обоснованный вариант сырья, ибо добыча железа по себестоимости в десятки раз ниже, нежели другие типы металлов периодической системы. | Мельчайшие неточности в многоэтапном процессе изготовления стали оборачиваются фатальными провалами в качестве итоговой продукции. |
Благодаря простоте сгибания, нарезания и сварки, стальные конструкции, часто используемые не только в промышленных масштабах, но и в домашнем хозяйстве. В зависимости от способа производства, свойства сплава могут варьироваться очень сильно. И удельной теплоемкости это касается, в том числе.
Классификация стали
Параметр | Компоненты + описание |
---|---|
По химическому составу | Углеродистые . Легирующим элементом выступает углерод. В зависимости от его доли в сплаве, идет подразделение на малоуглеродистые (менее 0.3%), среднеуглеродистые (от 0.3% до 0.8%) и высокоуглеродистые (более 0.7%). |
Легированные . Здесь также 3 подгруппы в зависимости от долевого вхождения примесей – меньше 2.5%, от 2.5% до 10%, и более 10%. Низко-, средне-, и высоколегированные соответственно. Добавками могут быть как металлы, так и неметаллические вещества. Самая популярная из легированных сталей – нержавейка. | |
По структурному составу | Перлитная . Разновидности стали с низким содержанием углерода. |
Мартенситные . В сплаве большое количество примесей. | |
Аустенитная. Высоколегированная сталь. | |
По раскислителю | Спокойная . В сплаве не содержится закись железа, что делает металл однородным и стабильным. Используется не часто из-за дороговизны производства. |
Полуспокойная . Твердеет без кипения, но сопутствующие газы выделяются + часть из них остается в сплаве и после отвердевания. Сталь используется в конструкционных целях. | |
Кипящая . С содержанием газов в остывшем материале. Из-за этого слабо пригоден к сварке. По технологии изготовления – это самый дешевый вариант, потому используется для большинства простых конструкций. | |
По назначению | Строительная . Обычные и низколегированные разновидности стали с хорошими показателями свариваемости. Используются в конструкциях с высокими статическими нагрузками. |
Инструментальная. Относят стали с высоким содержанием углерода и сторонних примесей (более 20%). В категории имеется классификация на штампованные, измерительные и режущие. | |
Конструкционные . Сплавы имеют незначительное содержание марганца. Основная область применения – узловые элементы конструкций. Из-за необходимости разнообразия в свойствах, в категории популярные среднелегированные стали. | |
Специальные . По сути, это специфические разновидности конструкционных сталей. Специализированное назначение – устойчивость к жару, кислоте и другим агрессивным средам. | |
По примесям | Рядовые . Содержание серы и фосфора не более 7 сотых процента. |
Качественные . Долевое содержание серы меньше 0.04% и фосфора меньше 0.35%. По изготовлению обходятся дороже, но в отношении механических свойств – куда лучше. | |
Высококачественные . Долевое содержание серы и фосфора менее 0.025%. Технология изготовления – электрические печи, где требуется низкое вкрапление неметаллических примесей. | |
Особовысококачественные . Элита среди стали. Процентное содержание серы менее 0.015%, а фосфора менее 0.025%. |
Вдаваться в тонкости производства не будем, но вы должны понимать, что удельная теплоемкость марки стали напрямую зависит от методов ее производства. В 2020 году выделяют 4 метода изготовления стальных сплавов – мартеновский, кислотно-конвертерный, электроплавильный и прямой. По своей сути, производство стальных сплавов – это переработка чугуна с отжиганием излишних примесей и введением легирующих компонентов. И чем дороже сырье/технология, тем лучше результат.
Калькулятор веса стального круга
Средняя удельная теплоемкость высоколегированных сталей
В таблице даны значения массовой удельной теплоемкости высоколегированных сталей с особыми свойствами таких, как сталь Г13 и сталь Р18.
Теплоемкость сталей Г13 и Р18 приведена в размерности кДж/(кг·град) при температурах 50…1300°С.
Средняя удельная теплоемкость сталей низколегированных
В таблице представлены значения массовой удельной теплоемкости низколегированных сталей. Даны значения теплоемкости для следующих марок стали: сталь 30Х, 30Н3, 30ХН3, 30Г2, 50С2Г. Удельная теплоемкость сталей в таблице выражена в кДж/(кг·град) и указана в зависимости от температуры — в интервале от 50 до 1300°С.
Средняя удельная теплоемкость сталей низколегированных
В таблице представлены значения массовой удельной теплоемкости низколегированных сталей. Даны значения теплоемкости для следующих марок стали: сталь 30Х, 30Н3, 30ХН3, 30Г2, 50С2Г. Удельная теплоемкость сталей в таблице выражена в кДж/(кг·град) и указана в зависимости от температуры — в интервале от 50 до 1300°С.
Теоретические основы металлургического производства
1.3 Основные физические свойства железа |
Температура плавления
химически чистого железа составляет 1539оС. Технически чистое железо, полученное в результате окислительного рафинирования, содержит некоторое количество растворенного в металле кислорода. По этой причине температура его плавления понижается до 1530оС.
Температура плавления стали всегда ниже температуры плавления железа в связи с наличием в ней примесей. Растворенные в железе металлы (Mn, Cr, Ni. Co, Mo, V и др.) понижают температуру плавления металла на 1 – 3оС на 1% введенного элемента, а элементы из группы металлоидов (C, O, S, P и др.) на 30 – 80оС.
На протяжении большей части общей продолжительности плавки температура плавления металла изменяется главным образом в результате изменения содержания углерода. При концентрации углерода 0,1 – 1,2%, которая характерна для доводки плавки в сталеплавильных агрегатах, температуру плавления металла с достаточной для практических целей точностью можно оценить из уравнения
Теплота плавления железа
составляет 15200 Дж/моль или 271,7 кДж/кг.
Температура кипения железа
в изданиях последних лет приводится равной 2735оС. Однако, опубликованы результаты исследований, согласно которым температура кипения железа значительно выше (до 3230оС).
Теплота испарения железа
составляет 352,5 кДж/моль или 6300 кДж/кг.
Давление насыщенного пара железа
(PFe, Па) можно оценить при помощи уравнения
где Т – температура металла, К.
Результаты расчета давления насыщенного пара железа при различных температурах, а также содержания пыли в окислительной газовой фазе над металлом (X
, г/м3) представлены в таблице 1.1.
Таблица 1.1
– Давление насыщенного пара железа и запыленность газов при разных температурах
Согласно существующим санитарным нормам содержание пыли в газах, которые выбрасываются в атмосферу, не должно превышать 0,1 г/м3. Из данных таблицы 1.1 видно, что при 1600оС запыленность газов над открытой поверхностью металла выше допустимых значений. Поэтому обязательно требуется очистка газов от пыли, состоящей в основном из оксидов железа.
Динамическая вязкость
. Коэффициент динамической вязкости жидкости () определяется из соотношения
где F – сила взаимодействия двух движущихся слоев, Н;
S – площадь соприкосновения слоев, м2;
– градиент скорости слоев жидкости по нормали к направлению потока, с-1.
Динамическая вязкость сплавов железа обычно изменяется в пределах 0,001 – 0,005 Па•с. Ее величина зависит от температуры и содержания примесей, главным образом углерода. При перегреве металла над температурой плавления выше 25 – 30оС влияние температуры не существенно.
Кинематическая вязкость
жидкости представляет собой скорость передачи импульса в потоке единичной массы. Ее величина определяется из уравнения
где – плотность жидкости, кг/м3.
Величина динамической вязкости жидкого железа близка к 6•10-7 м2/с.
Плотность железа
при 1550 – 1650оС равна 6700 – 6800 кг/м3. При температуре кристаллизации плотность жидкого металла близка к 6850 кг/м3. Плотность твердого железа при температуре кристаллизации равна 7450 кг/м3, при комнатной температуре – 7800 кг/м3.
Из обычных примесей наибольшее влияние на плотность расплавов железа оказывают углерод и кремний, понижая ее. Поэтому обычного состава жидкий чугун имеет плотность 6200 – 6400 кг/м3, твердый при комнатной температуре – 7000 – 7200 кг/м3.
Плотность жидкой и твердой стали занимает промежуточное положение между плотностями железа и чугуна и составляет соответственно 6500 – 6600 и 7500 – 7600 кг/м3.
Удельная теплоемкость
жидкого металла практически не зависит от температуры. В оценочных расчетах величину ее можно принимать равной 0,88 кДж/(кг•К) для чугуна и 0,84 кДж/(кг•К) для стали.
Поверхностное натяжение железа
имеет максимальное значение при температуре около 1550оС. В области более высоких и низких температур величина его уменьшается. Это отличает железо от большинства металлов, для которых характерно понижение поверхностного натяжения при повышении температуры.
Поверхностное натяжение жидких сплавов железа существенно меняется в зависимости от химического состава и температуры. Обычно оно изменяется в пределах 1000 – 1800 мДж/м2 (рисунок 1.1).
Рисунок 1.1
– Влияние примесей на величину поверхностного натяжения сплавов железа
Растворимость. Весьма ограниченную растворимость в жидком и твердом железе имеют щелочные (Li, Na, K, Rb, Cs) и щелочноземельные (Mg, Ca, Ba, Sr) металлы. Кроме того практически нерастворимыми являются Ag, Cd и Bi.
К числу металлов, имеющих неограниченную растворимость в железе, относятся Mn, Ni, Co, Cu, Al, Sb, Ce и все редкоземельные металлы.
Ограниченной растворимостью в железе обладают Cr, V, Mo, W, Ti, Zr, Pb, Sn, Pt и др. Но при высоких температурах все металлы этой группы, кроме Pb и Sn, растворяются в расплавах железа в неограниченных количествах..
Удельная теплоёмкость — это количество тепла, которое требуется затратить, чтобы нагреть 1 килограмм вещества на 1 градус по шкале Кельвина (или Цельсия).
Физическая размерность удельной теплоемкости: Дж/(кг·К) = Дж·кг-1·К-1 = м2·с-2·К-1.
В таблице приводятся в порядке возрастания значения удельной теплоемкости различных веществ, сплавов, растворов, смесей. Ссылки на источник данный приведены после таблицы.
При пользовании таблицей 1 следует учитывать приближенный характер данных. Для всех веществ удельная теплоемкость зависит от температуры и агрегатного состояния. У сложных объектов (смесей, композитных материалов, продуктов питания) удельная теплоемкость может значительно варьироваться для разных образцов.
Таблица 1. Теплоемкость чистых веществ
Удельная теплоемкость, Дж/(кг·К) | ||
Золото | твердое | 129 |
Свинец | твердое | 130 |
Иридий | твердое | 134 |
Вольфрам | твердое | 134 |
Платина | твердое | 134 |
Ртуть | жидкое | 139 |
Олово | твердое | 218 |
Серебро | твердое | 234 |
Цинк | твердое | 380 |
Латунь | твердое | 380 |
Медь | твердое | 385 |
Константан | твердое | 410 |
Железо | твердое | 444 |
Сталь | твердое | 460 |
Высоколегированная сталь | твердое | 480 |
Чугун | твердое | 500 |
Никель | твердое | 500 |
Алмаз | твердое | 502 |
Флинт (стекло) | твердое | 503 |
Кронглас (стекло) | твердое | 670 |
Кварцевое стекло | твердое | 703 |
Сера ромбическая | твердое | 710 |
Кварц | твердое | 750 |
Гранит | твердое | 770 |
Фарфор | твердое | 800 |
Цемент | твердое | 800 |
Кальцит | твердое | 800 |
Базальт | твердое | 820 |
Песок | твердое | 835 |
Графит | твердое | 840 |
Кирпич | твердое | 840 |
Оконное стекло | твердое | 840 |
Асбест | твердое | 840 |
Кокс (0…100 °С) | твердое | 840 |
Известь | твердое | 840 |
Волокно минеральное | твердое | 840 |
Земля (сухая) | твердое | 840 |
Мрамор | твердое | 840 |
Соль поваренная | твердое | 880 |
Слюда | твердое | 880 |
Нефть | жидкое | 880 |
Глина | твердое | 900 |
Соль каменная | твердое | 920 |
Асфальт | твердое | 920 |
Кислород | газообразное | 920 |
Алюминий | твердое | 930 |
Трихлорэтилен | жидкое | 930 |
Абсоцемент | твердое | 960 |
Силикатный кирпич | твердое | 1000 |
Полихлорвинил | твердое | 1000 |
Хлороформ | жидкое | 1000 |
Воздух (сухой) | газообразное | 1005 |
Азот | газообразное | 1042 |
Гипс | твердое | 1090 |
Бетон | твердое | 1130 |
Сахар-песок | 1250 | |
Хлопок | твердое | 1300 |
Каменный уголь | твердое | 1300 |
Бумага (сухая) | твердое | 1340 |
Серная кислота (100%) | жидкое | 1340 |
Сухой лед (твердый CO2) | твердое | 1380 |
Полистирол | твердое | 1380 |
Полиуретан | твердое | 1380 |
Резина (твердая) | твердое | 1420 |
Бензол | жидкое | 1420 |
Текстолит | твердое | 1470 |
Солидол | твердое | 1470 |
Целлюлоза | твердое | 1500 |
Кожа | твердое | 1510 |
Бакелит | твердое | 1590 |
Шерсть | твердое | 1700 |
Машинное масло | жидкое | 1670 |
Пробка | твердое | 1680 |
Толуол | твердое | 1720 |
Винилпласт | твердое | 1760 |
Скипидар | жидкое | 1800 |
Бериллий | твердое | 1824 |
Керосин бытовой | жидкое | 1880 |
Пластмасса | твердое | 1900 |
Соляная кислота (17%) | жидкое | 1930 |
Земля (влажная) | твердое | 2000 |
Вода (пар при 100 °C) | газообразное | 2020 |
Бензин | жидкое | 2050 |
Вода (лед при 0 °C) | твердое | 2060 |
Сгущенное молоко | 2061 | |
Деготь каменноугольный | жидкое | 2090 |
Ацетон | жидкое | 2160 |
Сало | 2175 | |
Парафин | жидкое | 2200 |
Древесноволокнистая плита | твердое | 2300 |
Этиленгликоль | жидкое | 2300 |
Этанол (спирт) | жидкое | 2390 |
Дерево (дуб) | твердое | 2400 |
Глицерин | жидкое | 2430 |
Метиловый спирт | жидкое | 2470 |
Говядина жирная | 2510 | |
Патока | 2650 | |
Масло сливочное | 2680 | |
Дерево (пихта) | твердое | 2700 |
Свинина, баранина | 2845 | |
Печень | 3010 | |
Азотная кислота (100%) | жидкое | 3100 |
Яичный белок (куриный) | 3140 | |
Сыр | 3140 | |
Говядина постная | 3220 | |
Мясо птицы | 3300 | |
Картофель | 3430 | |
Тело человека | 3470 | |
Сметана | 3550 | |
Литий | твердое | 3582 |
Яблоки | 3600 | |
Колбаса | 3600 | |
Рыба постная | 3600 | |
Апельсины, лимоны | 3670 | |
Сусло пивное | жидкое | 3927 |
Вода морская (6% соли) | жидкое | 3780 |
Грибы | 3900 | |
Вода морская (3% соли) | жидкое | 3930 |
Вода морская (0,5% соли) | жидкое | 4100 |
Вода | жидкое | 4183 |
Нашатырный спирт | жидкое | 4730 |
Столярный клей | жидкое | 4190 |
Гелий | газообразное | 5190 |
Водород | газообразное | 14300 |
Таблица 2. Удельная теплоемкость углеродистых сталей марок Сталь 20 и Сталь 40 при высоких температурах (Дж/(кг∙ºC)) От 50 ºC до заданной температуры
Температура, ºC | Сталь 20 | Сталь 40 |
100 | 486 | 486 |
150 | 494 | 494 |
200 | 499 | 503 |
250 | 507 | 511 |
300 | 515 | 520 |
350 | 524 | 528 |
400 | 532 | 541 |
450 | 545 | 549 |
500 | 557 | 561 |
550 | 570 | 574 |
600 | 582 | 591 |
650 | 595 | 608 |
700 | 608 | 629 |
750 | 679 | 670 |
800 | 675 | 704 |
850 | 662 | 704 |
900 | 658 | 704 |
950 | 654 | 700 |
1000 | 654 | 696 |
1050 | 654 | 691 |
1100 | 649 | 691 |
1150 | 649 | 691 |
1200 | 649 | 687 |
1250 | 654 | 687 |
1300 | 654 | 687 |
Источник: Теплофизические свойства веществ, Справочник. Под ред. Н.Б.Варгафтика. Ленинград: Государственное энергетическое издательство. 1956 — 367 с.
Таблица теплоемкости некоторых материалов.
Таблица теплоемкости некоторых материалов.
Таблица показывает, какое количество тепла может сохранить в себе 1 кубометр материала при его нагреве на 1 градус.
№ по СНИП | Материал | Плотность кг/м 3 | Удельная теплоемкость, кДж/кг* o C | Кол-во тепла на 1 градус, кДж/м 3 * o C |
144 | Пенополистирол | 40 | 1,34 | 54 |
129 | Маты минерало-ватные прошивные | 125 | 0,84 | 105 |
143 | Пенополистирол | 100 | 1,34 | 134 |
145 | Пенопласт ПХВ-1 | 125 | 1,26 | 158 |
142 | Пенополистирол | 150 | 1,34 | 201 |
67 | Газо- и пенобетон газо- и пено-силикат | 300 | 0,84 | 252 |
66 | Газо- и пенобетон газо- и пено-силикат | 400 | 0,84 | 336 |
119 | Плиты древесно-волокнистые и древесно-стружечные | 200 | 2,30 | 460 |
65 | Газо- и пенобетон газо- и пено-силикат | 600 | 0,84 | 504 |
64 | Газо- и пенобетон газо- и пено-силикат | 800 | 0,84 | 672 |
70 | Газо- и пено- золобетон | 800 | 0,84 | 672 |
83 | Листы гипсовые обшивочные (сухая штукатурка) | 800 | 0,84 | 672 |
63 | Газо- и пенобетон газо- и пено-силикат | 1000 | 0,84 | 840 |
69 | Газо- и пено- золобетон | 1000 | 0,84 | 840 |
118 | Плиты древесно-волокнистые и древесно-стружечные | 400 | 2,30 | 920 |
68 | Газо- и пено- золобетон | 1200 | 0,84 | 1008 |
108 | Сосна и ель поперёк волокон | 500 | 2,30 | 1150 |
109 | Сосна и ель вдоль волокон | 500 | 2,30 | 1150 |
92 | Керамический пустотный | 1400 | 0,88 | 1232 |
112 | Фанера клееная | 600 | 2,30 | 1380 |
117 | Плиты древесно-волокнистые и древесно-стружечные | 600 | 2,30 | 1380 |
91 | Кирпич керамический | 1600 | 0,88 | 1408 |
47 | Бетон на доменных гранулированных шлаках | 1800 | 0,84 | 1512 |
84 | Кирпичная кладка (кирпич глиняный) | 1800 | 0,88 | 1584 |
110 | Дуб поперек волокон | 700 | 2,30 | 1610 |
111 | Дуб вдоль волокон | 700 | 2,30 | 1610 |
116 | Плиты древесно-волокнистые и древесно-стружеч-ные | 800 | 2,30 | 1840 |
2 | Бетон на гравии или щебне из природного камня | 2400 | 0,84 | 2016 |
1 | Железо-бетон | 2500 | 0,84 | 2100 |
113 | Картон облицовочный | 1000 | 2,30 | 2300 |
115 | Плиты древесно-волокнистые и древесно-стружеч-ные | 1000 | 2,30 | 2300 |
Вода | 1000 | 4,18 | 4180 |
Пример. Сколько тепла будет накоплено в 1 кубометре воды при нагреве ее от 40 градусов до 90 градусов?
Удельная теплоемкость воды при 20 o Суд = 4,18 кДж/кг* o С Разница температур Т = 90-40 = 50 o Удельный вес г = 1000 кг/м 3 Объем v=1 м 3 Количество запасенной энергии Э = C*Т*v*г = 4.18*50*1*1000 = 209000 кДж (
Теплопроводимость
Теплопроводность численно равна количеству теплоты (Дж), проходящее через единицу площади (кв.м) за единицу времени (сек) при единичном температурном градиенте.
Коэффициенты теплопроводности из справочника:
Металл | Коэффициент теплопроводности, Вт/(м*К) |
Медь | 390 |
Алюминий | 236 |
Сталь | 47 |
Чугун | 42 |
Вывод: чугун распределяет тепло медленно. Иными словами, мясо на чугунной сковороде не будет пригорать (в том числе) из-за более равномерного распределения тепла.
Похожая ситуация в приготовлении шашлыка на природе. Приготовление мяса на углях позволяет пропечь куски. Приготовление на открытом огне просто зажаривает внешнюю часть кусков мяса, оставив внутренние части сырыми.
Средняя удельная теплоемкость углеродистых сталей
В таблице представлены значения массовой теплоемкости железа и следующих углеродистых сталей: сталь 08КП, ст. 08, сталь 20, 40, сталь У8, У8′, у12. Массовая удельная теплоемкость углеродистых сталей в таблице дана в размерности кДж/(кг·град) в интервале температуры от 50 до 1300°С.
Средняя удельная теплоемкость углеродистых сталей
В таблице представлены значения массовой теплоемкости железа и следующих углеродистых сталей: сталь 08КП, ст. 08, сталь 20, 40, сталь У8, У8′, у12. Массовая удельная теплоемкость углеродистых сталей в таблице дана в размерности кДж/(кг·град) в интервале температуры от 50 до 1300°С.
Удельная теплоёмкость вещества означает количество теплоты, необходимое для нагрева единицы веществ на один градус. Чаще всего за единицу вещества берётся масса в 1 кг. Реже используются единицы объёма, например, кубометр или литр. В химии при термохимических реакциях используется молярная теплоёмкость, когда за единицу вещества принимают моль. Удельная теплоёмкость заметно меняется при изменении температуры и в большей степени при изменении агрегатного состояния вещества, например, значения теплоёмкости воды будут разными в жидком, твёрдом и газообразном состоянии. В приведённой таблице указывается также температура и агрегатное состояние вещества.
Удельная теплоёмкость материалов
Наименование материала | Температура 0С | Удельная теплоёмкость | |
кДж /(кг · К) | кал /(г · 0С) | ||
Удельная теплоёмкость газов и паров | |||
Азот | 0 — 200 | 1,0 | 0,25 |
Водород | 0 — 200 | 14,2 | 3,41 |
Водяной пар | 100 — 500 | 2,0 | 0,48 |
Воздух | 0 — 400 | 1,0 | 0,24 |
Гелий | 0 — 600 | 5,2 | 1,24 |
Кислород | 20 — 440 | 0,92 | 0,22 |
Оксид углерода | 26 — 200 | 1,0 | 0,24 |
Пары спирта | 40 — 100 | 1,2 | 0,29 |
Хлор | 13 — 200 | 0,5 | 0,12 |
Удельная теплоёмкость жидкостей при нормальном атмосферном давлении | |||
Бензин (Б-70) | 20 | 2,05 | 0,49 |
Вода | 1 — 100 | 4,19 | 1,00 |
Глицерин | 0 — 100 | 2,43 | 0,58 |
Керосин | 0 — 100 | 2,09 | 0,50 |
Масло машинное | 0 — 100 | 1,67 | 0,40 |
Масло подсолнечное | 20 | 2,43 | 0,58 |
Молоко | 20 | 3,94 | 0,94 |
Нефть | 0 — 100 | 1,67 — 2,09 | 0,40 — 0,50 |
Ртуть | 0 — 300 | 0,138 | 0,033 |
Спирт | 20 | 2,47 | 0,59 |
Эфир | 18 | 3,34 | 0,80 |
Удельная теплоёмкость расплавленных металлов и сжиженных газов | |||
Азот | -200,4 | 2,01 | 0,48 |
Алюминий | 660 — 1000 | 1,09 | 0,36 |
Водород | -257,4 | 7,41 | 1,77 |
Воздух | -193,0 | 1,97 | 0,47 |
Гелий | -269,0 | 4,19 | 1,00 |
Золото | 1055 — 1300 | 0,14 | 0,034 |
Кислород | -200,3 | 1,63 | 0,39 |
Натрий | 100 | 1,34 | 0,33 |
Олово | 250 | 0,25 | 0,060 |
Свинец | 327 | 0,16 | 0,039 |
Серебро | 960 — 1300 | 0,29 | 0,069 |
Удельная теплоёмкость твёрдых веществ | |||
Азот твёрдый | -250 | 0,46 | 0,11 |
Бетон | 20 | 0,88 | 0,21 |
Бумага | 20 | 1,50 | 0,36 |
Воздух твёрдый | -193 | 2,00 | 0,47 |
Графит | 0 — 100 | 0,75 | 0,18 |
Дерево: | |||
дуб | 0 — 100 | 2,40 | 0,57 |
ель, сосна | 0 — 100 | 2,70 | 0,65 |
Каменная соль | 0 — 100 | 0,92 | 0,22 |
Камень | 0 — 100 | 0,84 | 0,20 |
Кирпич | 0 | 0,88 | 0,21 |
Кислород твёрдый | -200,3 | 1,60 | 0,39 |
Лёд | -40 — 0 | 2,10 | 0,50 |
Нафталин | 20 | 1,30 | 0,31 |
Парафин | 20 | 2,89 | 0,69 |
Пробка | 0 — 100 | 2,00 | 0,48 |
Стекло: | |||
обыкновенное | 0 — 100 | 0,67 | 0,16 |
зеркальное | 0 — 100 | 0,79 | 0,19 |
лабораторное | 0 — 100 | 0,84 | 0,20 |
Фарфор | 0 — 100 | 1,10 | 0,26 |
Шифер | 20 | 0,75 | 0,18 |
Удельная теплоёмкость металлов и сплавов | |||
Алюминий | 0 — 200 | 0,92 | 0,22 |
Вольфрам | 0 — 1000 | 0,15 | 0,035 |
Железо | 0 — 500 | 0,54 | 0,13 |
Золото | 0 — 500 | 0,13 | 0,032 |
Иридий | 0 — 1000 | 0,15 | 0,037 |
Магний | 0 — 500 | 1,10 | 0,27 |
Медь | 0 — 500 | 0,40 | 0,097 |
Никель | 0 — 300 | 0,50 | 0,12 |
Олово | 0 — 200 | 0,23 | 0,056 |
Платина | 0 — 500 | 0,14 | 0,033 |
Свинец | 0 — 300 | 0,14 | 0,033 |
Серебро | 0 — 500 | 0,25 | 0,059 |
Сталь | 50 — 300 | 0,50 | 0,12 |
Цинк | 0 — 300 | 0,40 | 0,097 |
Чугун | 0 — 200 | 0,54 | 0,13 |
Соотношение между единицами удельной теплоёмкости
Единицы удельной теплоёмкости | Дж /(кг · К) | кДж/ (кг · К) | кал /(г · 0С) или ккал/(кг · 0С) |
1 Дж /(кг · К) | 1 | 0,001 | 2,39 · 10-4 |
1 кДж/ (кг · К) | 1000 | 1 | 0,239 |
1 кал /(г · 0С) = 1 ккал/(кг · 0С) | 4,19 · 103 | 4,19 | 1 |
Примечание: 1 кал /(г · 0С) = 1 ккал/(кг · 0С) = 4186,8 Дж /(кг · К) = 4,1868 кДж /(кг · К). Градусы по Цельсию и Кельвину равны по модулю. |
Таблица — плотность и удельная теплоемкость марок нержавеющей стали
Вас интересует плотность и удельная теплоемкость нержавеющей стали? Поставщик Авглоб предлагает купить нержавеющую сталь по выгодной цене. Гарантируем своевременную доставку продукции по любому указанному адресу,. Постоянные клиенты могут воспользоваться дисконтными скидками. Цена наилучшая в данном сегменте.
Техническая характеристика
Под удельной теплоемкостью подразумевается количество тепла необходимое, чтобы нагреть материал на 1 градус
Марки | Примечание | Единицы измерения | t°С | Величина удельной теплоемкости |
AISI 201, 304, 316, 409, 430 | Легированный железный сплав не поддающийся коррозии | Дж/(кг·град) | 20−100°С | 420−500 |
12х18н10т | —«— | —«— | —«— | 462−504 |
Молярная теплоемкость (отношение теплоёмкости к количеству материала). Это — физическая величина, численно равная количеству теплоты, которое необходимо передать одному молю (данного) вещества для того, чтобы его температура изменилась на единицу. Молярная теплоёмкость обычно обозначается символом иногда без индекса или с другим индексом (характеризующим условия протекания процесса измерения).
Тепло-физические свойства (температура 20°С)
Плотность: 7700−7900 кг/м³ (7,7 до 7,9 г/см³).Удельный вес: 75500−77500 Н/м³ (7700−7900 кгс/м³ в системе МКГСС).Температура плавления: 1450−1520 °C.Удельная теплота плавления: 84 кДж/кг (20 ккал/кг, 23 Вт·ч/кг).
Коэффициент теплопроводности при температуре 100 °C
Марка стали | Вт/(м·К) |
Хромо-никель-вольфрамовая сталь | 15,5 |
Хромистая | 22,4 |
Молибденовая | 41,9 |
Углеродистая (марка 30) | 50,2 |
Углеродистая (марка 15) | 54,4 |
Коэффициент линейного расширения α
Коэффициент линейного расширения α
. Наибольшее влияние на коэффициент
α оказывает углерод, в особенности в связанном состоянии. Одному проценту углерода соответствует примерно в 5 раз большее количество цементита, чем графита. Поэтому графитизирующие элементы
(Si, Al, Ti, Ni, Сu и др.) повышают, а антиграфнтизирующие
(Cr, V, W, Мо, Мn и др.) уменьшают коэффициент линейного расширения,
Наибольшим значением α
отличаются аустенитные никелевые чугуны, а также ферритные алюминиевые чугуны типа чугаль и пирофераль. Поэтому при достаточно высоком содержании
Ni, Сu, Мn значение
α ; резко увеличивается. Однако при содержании
Ni>20%α понижается: и достигает минимума при 35-37 % Ni. Форма графита существенно влияет на коэффициент линейного расширения лишь при низких температурах;
α высокопрочного чугуна с шаровидным графитом несколько выше, чем
α чугуна с пластинчатым графитом.