Системы вакуумного напыления. Плазменное напыление, ионное напыление. Установки вакуумного напыления УВН.
Ионно-плазменное напыление
Ионно-плазменное напыление – разновидность катодного способа нанесения материала на поверхность изделия. Процесс производится путем бомбардировки подложки ионами плазменного вещества газовым разрядом.
К преимуществам ионно-плазменного напыления относят:
- Высокое качество сцепления и равномерность покрытия.
- Не изменяется стехиометрический состав поверхности изделия.
- Возможность покрывать деталь тугоплавкими и неплавящимися материалами.
- Контроль свойств напыления в процессе нанесения.
- Управление составом мишени в течение всего процесса.
- Возможность очищать поверхность подложки и растущего покрытия.
Состояние плазмы вещества достигается с помощью катодного пятна. Его размер измеряется в микрометрах, но температура развивается такая, при которой любые материалы превращаются в высокоионизированный газ. При всех достоинствах ионно-плазменное напыление наноуглеродных покрытий имеет ряд недостатков в сравнении с другими методами:
- Небольшая скорость рабочего процесса 3 мкм/мин.
- Загрязнение в материале за счет плавления катода.
- Габариты камеры лимитируют размер детали.
Для изготовления радиотехнических деталей используется ионно-плазменное напыление нитрида титана. Такое покрытие получило распространение при изготовлении кровельных материалов благодаря антикоррозионным свойствам и эстетическому виду. Основой служит нержавеющая сталь.
Покрытие осуществляется в два этапа в условиях вакуума. Сначала наносят слой титана, который служит переходным материалом между подложкой и основным слоем нитрида титана. Толщина 2-х слоев не превышает 40 мкм. Достоинства ионно-плазменного напыления нитрида титана:
- В условиях вакуума обеспечена чистота состава покрытия, благодаря этому цвет и адгезия стабильны в течение длительного времени.
- Использование высокой температуры при напылении гарантирует максимальное сцепление поверхностей основы и титанового покрытия.
Для осаждения атомов титана используют специальную вакуумную камеру.
Источник: http://inlinecom.ru/ionno-plazmennoe-napylenie/
Установка для финишного плазменного упрочнения
Установка финишного плазменного упрочнения предназначена для осаждения аморфных покрытий на основе соединений кремния с целью изменения свойств поверхностного слоя: увеличения твердости, уменьшения коэффициента трения, создания сжимающих напряжений, залечивания микродефектов, образования диэлектрического и коррозионностойкого пленочного покрытия с низким коэффициентом теплопроводности, химической инертностью и специфической топографией поверхности, минимизации зон скоплений микроорганизмов, возможности биоактивной фиксации с костной тканью. Дополнительный эффект упрочнения нанесением покрытий — повторная плазменная закалка поверхностного слоя глубиной в несколько микрон. Само плазменное упрочнение металла представляет собой продукт плазмохимических реакций, вызванных перемещением подготовленного состава через дуговой плазматрон.
Итогом плазменного упрочнения деталей становится производство и введение в эксплуатацию инструментов и рабочего оборудования с конкретными технологическими свойствами: износоустойчивостью в условиях фреттинг-коррозии, жаропрочностью, коррозионной стойкостью и т. п.
Оборудование для упрочнения металла, в зависимости от специфики предназначения, то есть размера обрабатываемых деталей, состоит из подключаемого блока с жидкостным дозатором, плазмотрона с генератором и блока питания. Также аппаратура укомплектована системой автономного охлаждения, вентиляционными каналами и вытяжкой, прибором контроля за автоматическим нанесением покрытия.
−Заказать оборудование
Источник: http://kuban-stan.ru/tehnologii/ionnoe-napylenie.html
Установки плазменного напыления
Устройства плазменного напыления отличаются большим разнообразием конструкций. Будем рассматривать их от самых «традиционных» до самых «продвинутых».
Наиболее распространенные устройства, — это устройства с одним катодом и одним анодом, и с вводом порошка снаружи короткого сопла, перпендикулярно к оси пламени.
Принцип действия таких устройств показан на схеме (рисунок 28):
Рис. 28. Принцип плазменного напыления.
Как видно из схемы, короткое сопло плазматрона одновременно является анодом. Порошок вводится снаружи сопла перпендикулярно оси пламени, в непосредственной близости от дуги.
Самое популярное устройство этого типа, — плазматрон 3MB фирмы Sulzer Metco, который, с небольшими модификациями, существует уже больше 40 лет. На рисунке 29 представлены актуальные модели этой серии с максимальной мощностью 40 кВт.
Рис. 29. Плазматрон 3MB.
Несколько более новое и мощное (55 кВт) однокатодное устройство, — плазматрон F4, показанный на рисунке 30.
Рис. 30. Плазматрон F4.
Устройство 9MB, — один из самых мощных однокатодных плазматронов традиционного типа (80 кВт при токе 1000 А и напряжении 80 В) производится также фирмой Sulzer Metco (рисунок 31):
Рис. 31. Плазматрон 9MB
Традиционные однокатодные плазматроны других фирм мало отличаются от плазматронов Sulzer Metco: все они работают при относительно малом расходе газов, низком (< 100 В) напряжении и большом (до 1000 А) токе дуги. Ни один из традиционных плазматронов не позволяет достичь частицам скорости звука.
Достоинством плазматронов с небольшим расходом газов является возможность придания частицам очень высокой температуры (> 4000°C) из-за относительно долгого времени их пребывания в горячей зоне пламени рядом с дугой. Столь высокие температуры частиц позволяют расплавить практически любые керамические и металлические материалы.
Развитие техники плазменного напыления в последние двадцать лет идет по пути увеличения скорости частиц. Для придания частицам большей скорости необходимо увеличить давление плазмообразующих газов перед соплом, что автоматически приводит к повышению расхода газов и росту напряжения дуги.
Современное, мощное (до 85 кВт, ток до 379 А, напряжение до 223 В) устройство с одним катодом и анодом — это плазматрон 100HE американской фирмы Progressive Technologies Inc., который, благодаря большому давлению и расходу плазмообразующих газов, позволяет достичь скоростей частиц — близких к скорости звука (рисунок 32):
Рис. 32. Плазматрон 100HE.
Из-за высокой скорости плазмообразующего газа уменьшается время пребывания частиц в горячей зоне пламени и, соответственно, их температура. Для противодействия этому необходимо увеличивать мощность дуги и использовать в плазмообразующем газе большое количество водорода, который, благодаря процессу диссоциации-ассоциации молекул, удлиняет горячую зону пламени. Таким образом, плазматрон 100HE реализует температуру частиц, с размером 20-30 мкм, выше 2300°C при скорости около 250 м/сек, что делает возможным напылять покрытия из Cr3C2 — NiCr, Cr2O3 и Al2O3 с малой пористостью.
Вторым направлением развития, в комбинации с увеличением расхода газов, является деление одной дуги на три части, которое позволяет улучшить стабильность и равномерность факела пламени, уменьшить износ электродов и увеличить суммарную мощность пламени. Типичным примером такого устройства является новейший плазматрон TriplexProTM-210 фирмы Sulzer Metco с одним анодом и тремя катодами, максимальной мощностью 100 кВт (рисунок 33):
Рис. 33. Плазматрон TriplexProTM.
1 – задняя часть корпуса; 2 – анодный стек; 3 – передняя часть корпуса; 4 – изолятор; 5 – накидная гайка; 6 – три катода в керамическом блоке; 7 – элемент анодного стека; 8 – канал плазмы; 9 – насадка с тремя порошковыми дюзами.
Технология Triplex от Sulzer Metco вошла в практику термического напыления в 90-х годах. Эти устройство обладают, по сравнению с плазматронами с одной дугой, существенно большим ресурсом и стабильностью результатов напыления. Для многих коммерческих порошков плазматроны Triplex позволяют также улучшить производительность и КПД напыления при сохранении качества покрытия.
Фирмой GTV GmbH выпущено, в обход патента Sulzer Metco на трехкатодные плазматроны, устройство GTV Delta с одним катодом и тремя анодами, которое, в принципе, является ухудшенной компиляцией TriplexPro (рисунок 34):
Рис. 34. Плазматрон GTV Delta.
Последнее, третье направление развития — это отказ от радиального ввода порошка в пользу гораздо более рационального — осевого. Ключевой элемент конструкции плазматрона с осевым вводом порошка — Convergens был изобретен в 1994 году американцем Люсьеном Богданом Дэльча (Delcea, Lucian Bogdan).
В настоящее время существует только одно подобное устройство, — плазматрон Axial III, максимальной мощностью 150 кВт, производства канадской фирмы Mettech, которое объединяет собой все три направления развития (большой расход газов, три дуги и осевой ввод порошка). Установки плазменного напыления с плазматроном Axial III производятся и распространяются также немецкой фирмой Thermico GmbH.
На рисунках 35, 36 и 37 изображено само устройство Axial III и его конструктивная схема:
Рис. 35. Плазматрон Axial III.
Рис. 36. Вид на устройство Axial III со стороны сопла.
Рис. 37. Принципиальная схема Axial III.
Все современные установки плазменного напыления являются автоматическими, то есть, управление источниками тока, системой водяного охлаждения и расходом газов регулируется системой ЧПУ с визуализацией и сохранением рецептов на компьютере. Так, например, плазматрон Axial III поставляется фирмой Thermico GmbH в комплекте с компьютеризированной системой управления, самостоятельно проводящей зажигание дуг и выход на рабочий режим, выбор рецептов напыления, и осуществляющей контроль всех основных параметров: расхода трех плазмообразующих газов (аргона, азота и водорода), токов дуг, параметров системы водяного охлаждения. Эта же автоматическая система управляет и порошковым питателем.
О порошковом питателе Thermico нужно сказать особо. Это, наиболее «продвинутое» на сегодняшний день в мире устройство позволяет не только постоянно регулировать массовый расход порошка и расход несущего газа (азота или аргона), но и допускает использование тонкозернистых порошков с плохой сыпучестью, непригодных, например, для питателей фирмы Sulzer Metco.
Автор лично, в течение долгого времени работал с плазматроном Axial III и может из своего опыта сказать, что несмотря на некоторые конструктивные недоработки, этот плазматрон представляет собой самое прогрессивное устройство термического напыления, объединяющее достоинства высокоскоростного напыления с высокой температурой строго восстановительного пламени. Главное же достоинство Axial III состоит в осевом вводе порошка.
Источник: http://extxe.com/14186/plazmennoe-napylenie-princip-oborudovanie-plazmennogo-napylenija/
Возможности плазменных сварочников
Ниже показаны возможности на примере аппарата «Горыныч»:
- Сварка и пайка любых цветных металлов, а также нержавеющих сталей (толщина свариваемого металла зависит от модели устройства).
- Резка цветных и черных металлов.
- Закалка всех видов сталей.
- Создание химических соединений, получаемых под действием высокой температуры.
- Термическая усадка всех видов пластмасс и полимеров, включая ПВД, ПП, ПНД и ПВХ.
- Очистка поверхностей от грибка, плесени и других видов органических загрязнений.
- Сварка двух и более металлов, сплавов или сталей между собой.
- Пайка при помощи мягких припоев.
- Плавление металлов в частных кузнях.
- Первоначальная термическая обработка.
- Резка стекла и различных органических элементов (кварц, гранит, графит и многое другое).
- Начальное воронение компактных деталей.
- Порошковое напыление на небольшой площади.
- Создание и разделка стекла и изделий из стекла.
- Тушение начальных очагов возгорание водяным паром (без создания электрической дуги между катодом и анодом).
Подробнее о возможностях аппарата Горыныч смотрите в этом материале.
Источник: http://instrumentbaza.ru/tehnologii/plazmennoe-napylenie-svoimi-rukami.html
Процесс нанесения
Представляет собой переноску напыляемого вещества в частицах от установки к требуемой поверхности детали/изделия. Осуществляется строго по прямолинейной траектории при уровне давления от 1,0-1 до 10-7 Па. Перед началом процедуры обязательна тщательная очистка рабочей поверхности от органики и продуктов неорганического загрязнения.
Обратите внимание! Чем выше уровень очистки, тем лучше сцепление покрытия и как следствие более качественный результат на выходе.
После, необходимо провести операции по механической полировке либо шлифовке детали. Перед нанесением ионно-плазменного покрытия уровень шероховатости поверхности должен быть не больше Ra=1,25мкм, а для резьбы показатель другой — Ra=2,5мкм. Далее, проводится промывка бензином, этиловым спиртом для удаления абразивов и паст. Описанные манипуляции следует проводить с помощью ультразвуковой ванны.
После приступают к непосредственной процедуре с использованием частиц чистого металла либо его соединений, например, ионно плазменное напыление наноуглеродных покрытий. Завершающей стадией становится постепенное охлаждение детали и ее выдерживание в вакуумной камере. Готовый продукт может выпускаться в эксплуатацию и не требует дополнительных обработок.
Источник: http://saent.ru/ionno-plazmennoe-napylenie/
Установка вакуумного напыления УВН
Установка вакуумного напыления УВН-1М — это одна из более практических и полезных конструкций предоставленной серии. Эта форма конструкции содержит в наборе сразу 4 сменных научно-технических модуля, любой с каковых представляет собственную значимость в ходе резистивного улетучивания либо же распыления металлов. Не мене удачно устройство себя демонстрирует и в разбрызгивании проводящих веществ, дуговом испарении электродов из графика и в отделке углеродных нано текстур, что представлены весьма непростыми веществами.
Источник: http://kangen.ru/tehno-info/tehnologiya-napyleniya-metallov.html
Установки ионно-плазменного напыления
Установки ионно-плазменного напыления разрабатываются на основе двух схем: «Булат» и «Пуск». Их рабочие камеры устроены так, что возможно нанесение качественной однородной и многослойной мишени в условиях сниженной температуры.
Оборудование для ионно-плазменного напыления состоит из следующих частей:
- цилиндрический корпус;
- водоохлаждающая система;
- вакуумная система;
- электродуговой испаритель;
- основа;
- электрическая часть;
- механизм вращения;
- дверца.
Дверь расположена на боковой стенке корпуса, образуя вакуумную камеру. Стенки двойные, внутри находится полость водоохлаждения. На поверхности стен установлены электродуговые испарители. Их количество 2 шт. Третий испаритель расположен на дверце. Водоохлаждающая система состоит из труб и распределительной панели, оснащенной воронкой для зрительного контроля над протоком жидкости. Также на ней расположены датчики уровня. На коллекторе установлены вентили, с помощью которых регулируется расход воды. Давление в камере обеспечивается вакуумной системой. Остаточное давление регулируется автоматическим регулятором напуска газа. Вакуумная система состоит из 2-х видов клапанов: с электромагнитным приводом и напускного контролируемого. Также включает в себя электронный блок управления. Механизм вращения находится внутри основы, там же расположены блоки поджига дуги. Снаружи основы находится вакуумная система, панель, регулирующая водоохлаждение, электронный ключ. Наиболее востребованы следующие установки ионно-плазменного напыления:
- МАП-1М;
- АПН-250;
- Булат-3Т;
- Пуск 83;
- Булат-6К;
- ЮНИОН;
- ННВ 6.6-И1.
Их отличия заключаются во внешних размерах, скорости покрытия, габаритах вакуумной камеры, доступных показателях напряжения на детали и энергии однократных ионов.
Принцип работы у всех установок одинаков. Подложка подготавливается и закрепляется в технологической оснастке. Создается вакуум в камере. Затем включают электропривод, передающий планетарное вращение вокруг своей оси деталям. Также подложка вращается вокруг катода. После приведения в движения детали и катода, который возвратно-поступательно ходит вдоль основной оси, включают катушки анода. Приводится в действие электромагнитный фиксатор, начинается подача электрического потенциала смещения с отрицательным показателем на подложку. Затем возбуждается вакуумный дуговой разряд между катодом и анодом. Горение разряда поддерживает инверторный источник питания. Мишень превращается в плазму, которой покрывают деталь.
Источник: http://inlinecom.ru/ionno-plazmennoe-napylenie/
Технические характеристики
- напряжение питания — 220/380 В;
- потребляемая мощность – не более 5-12 кВт (в зависимости от комплектации);
- номинальный ток — 120 А;
- номинальное рабочее напряжение — не более 42 В;
- продолжительность включения — 100%;
- расход аргона — не более 5 л/мин;
- расход жидких технологических препаратов — не более 0,5 г/ч;
- расход охлаждающей воды — 180-220 л/ч (при отсутствии блока автономного охлаждения);
- толщина наносимого покрытия — до 3 мкм;
- занимаемая площадь, не более 5-15 м2 (в зависимости от комплектации);
- масса – 40-400 кг (в зависимости от комплектации).
Источник: http://kuban-stan.ru/tehnologii/ionnoe-napylenie.html
Технология процесса напыления
Исходный материал подается в столб плазмы в форме порошка или проволоки. Ионизированные газы высвобождают активные молекулы газов, некоторые из которых (например, водород) дополнительно поднимают температуру внутри плазменного столба, ускоряя процесс превращения молекул исходной заготовки в парообразное состояние. В результате ускоряется оседание движущихся частиц на подложку. Ионизация возможна не только из газа, но и из жидкости, испаряющейся в столбе дуги.
Напыляющие порошки разнообразят состав и свойства покрытий, поскольку в мелкодисперсное состояние может быть переработан широкий спектр металлов.
Источник: http://kuban-stan.ru/tehnologii/ionnoe-napylenie.html
Последующая обработка покрытия
Процесс распыления в потоке плазмы ограничен материалами, которые имеют более высокую температуру плавления, чем пламя. При более низких температурах и скоростях (до 40 м/с), энергетические характеристики движущихся частиц уменьшаются, что приводит к окислообразованию, пористости и наличием различных включений в готовом покрытии. Снижается прочность сцепления и адгезии между покрытием и подложкой. Такие покрытия подвергают шлифовке или полированию. В обоснованных случаях предусматривается термическая обработка – закалка, отпуск, нормализация.
Источник: http://kuban-stan.ru/tehnologii/ionnoe-napylenie.html